Sentiment Analysis using Unigrams and Bigrams

Urvashi Uberoy Divyanshu Pachisia
Department of Computer Science Department of Mechanical Engineering
Princeton University Princeton University
uuberoy(@princeton.edu divyanshupachisia@princeton.edu
Abstract

The classification of reviews into positive and negative classes is important be-
cause it lets us filter and sort based on the sentiment associated with a product
or experience. In this assignment, we train different classifiers on 2400 prod-
uct reviews and evaluate the performance of the classifier on a testing set with
600 product reviews. After training the classifiers on both unigram and bigram
representations of each review, with and without feature selection, we find that
the bigram representation results in a higher accuracy score, with an average in-
crease in accuracy of 13.5% across classifiers. While the bigrams representation
of the reviews initially increases the complexity of our model, we show that fea-
ture reduction techniques can be used to reduce this bigram model to the same
complexity as the unigram one without sacrificing the increased accuracy.

1 Introduction

To perform sentiment analysis on a review we are first faced with the fundamental question about
how to extract features from the data. One common approach is to extract unigrams, where individ-
ual words in the reviews are extracted and tallied. Another approach is to instead extract bigrams[]
i.e., pairs of words that are appear next to each other, and tally them for each review. In this as-
signment, we compare the unigrams and the bigrams representations based on their performance in
classifying reviews, while also keeping in mind the number of features required (model complexity)
for the performance.

2 Related Work

The classification of reviews based on sentiment is a well-studied task. The inclusion of bigrams in
this paper is inspired by Wang & Manning (2012), where they show that bigrams enhance the perfor-
mance of classification. [7] To counter the additional model complexity that bigrams add (in terms of
number of features), we use common feature selection techniques that are available in SciKitLearn.
This past work allows us to investigate whether a feature-reduced and thus, a complexity-reduced
bigram model still performs better than the unigram one.

3 Methods

3.1 Initial Data Exploration

While Wang & Manning showed that the bigrams increased performance on their dataset, we wanted
to gain intuition about whether it would have the same effect on ours. Figure 1 below shows that
while unigrams, such as “’problem,” are ambiguous in their sentiment (50-50 split in positive and
negative reviews), a bigrams representation, such as “no problem” has a clearer sentiment (mostly
positive reviews). This indicates that the bigrams representation is a valuable path to pursue.

3.2 Data processing: Cleaning the raw data to extract feature set
The preprocessor.py script given to us explored three main cleaning techniques:

"Note that in our bigrams representation, we include unigrams as well as bigrams, so hereafter “bigrams”
will refer to a combination of unigrams and bigrams.

Analysis of keywords in reviews

120 mmm Positive Reviews
110 Negative Reviews

Number of reviews

Figure 1: Sentiments associated with Unigrams and Bigrams

e Removing stop words using NLTK’s list of stopwords in the English language, which re-
moves words like "the,” *no,” and ’very’ that do not contribute to the sentiment of a review.

e Stemming using NLTK’s Porter Stemmer, which reduces words to their stem. For instance,
“happiness” and "happy”” would both be reduced to happi.”

e [emmatizing using NLTK’s WordNet Lemmatizer. This reduces each word to its base
form, so ”are” would be reduced to its infinitive: ’be.”

All these techniques were used in combination to identify 541 key tokens for the unigrams represen-
tation of the data. For the bigram approach, however, some stopwords, such as "no”, were included
because they are used in conjunction with other words, such as ”problem”, to add meaning. To pro-
duce the list of 4387 bigrams, we used SciKitLearn’s CountVectorizer function with the parameter
“ngram_range” set to (1, 2).

3.3 Feature Selection: Reducing the dimension of the feature set for model simplification
We used three different feature selection methods from the SciKitLearn Python Libraries. [2] [15]

1. Principal Component Analysis (PCA): Uses Singular Value Decomposition to find linear
combinations of features to lower dimensionality while maintaining variance. This is a
class-independent feature selection method.

2. Linear Discriminant Analysis (LDA): Finds the line that best separates our two classes and
then projects each data point onto this line, reducing the dimension to one. This doesn’t
work when the features are co-linear so PCA was used prior to LDA.

3. Chi-Square Test: Uses the Chi-Square test between features and the classes to score the
level of dependency. The 200 features with the highest scores were kept.

3.4 Classification Methods
We used four different classification methods from the SciKitLearn Python Libraries. [2] [5]

1. Logistic regression with {5 penalty (LR): Described in 3.5
Hyperparameter: C (inverse of regularization strength)

2. Support vector machine (SVM): Finds the separating line/hyperplane between data from
two classes to maximize the margin between them

Hyperparameters: C (penalty parameter to prevent overfitting), kernel type (nature
of decision boundary), Gamma (kernel coefficient)

3. Multinomial Naive Bayes classifier (NB):

Hyperparameters: Alpha (smoothing parameter in the form of a pseudocount)
4. Random Forests (RF):

Hyperparameters: Maximum Depth (of the tree), n-estimators (maximum trees)

Instead of using the default parameters for each classifier, we used SciKitLearn’s GridSearchCV
function to tune hyperparameters. This function iterates through different values for each hyperpa-
rameter and returns the parameters that produce the highest accuracy score.

3.5 One Method in Detail: Logistic Regression [1]

The basic premise underlying logistic regression is finding a set of weights corresponding to the set
of features in order to minimize the error in the classification. To understand the mechanics of this
technique, we first need to define the following variables.

e X = {x,})_,, where X denotes the entire body of training data with dimension NxD,
and x,, denotes a single data point with dimension D x 1.

e Y = {yn}_,, where Y denotes the training labels or classes with dimension Nx 1, and
¥n denotes the class of the nth data point.

o w = {wq}?_ |, where w denotes the weight vector with dimension Dx 1 which has a value
(or weight) corresponding to each feature. In the case of binary classification, negative
weights are assigned to features associated with class 0, while positive weights are assigned
to features associated with class 1. More about how the weights are computed will follow
below.

We also define the logistic function o(z) and use it to form our predictions (§).

1 - T
o(z) = = J=0c(w' xp)
Here, we see how the weights corresponding to the features determine our prediction - negative
weights drive the prediction to zero while positive weights drive the prediction to 1, given that
X, only contains positive values. Therefore, features with negative weights should correlate to
a negative sentiment (y,, = 0) and vice versa. The method to determine weights is rooted in the
probability of predicting the actual value of y,, given the weights, w and data, x,,. We take the log
of this probability and see that the gradient of this log probability gives us an intuitive error function:

Pr(y,|w,x,) = o(wix,)?" - (1 — o(wlx,)) v
VW(IOgPr(yn|W»Xn)) = Xn(yn - U(WTXn)) = Xp - (yn - Qn)

error in prediction

Through a method called Stochastic Gradient Descent we find the weights to minimize this error
function. The algorithm used to do this is shown below:

wttD w® 4 X (Yn — O’(W(t)TXn))

In each iteration, the value of n is drawn from a uniform distribution across 1... N, leading to a
less computationally-intensive algorithm than full gradient descent. We must also consider the rate
at which we perform the gradient descent (referred to as the learning rate, o) and the danger of over-
fitting the weights to the training data. In order to correct for this we scale the change in prediction
by « and add a regularization penalty, A. The value of « is usually between 0 and 1 which reduces
the rate at which we change the weights and) is set to ensure the weights do not become too large
or small and result in over-fitting. We modify our algorithm to find the weights to include these two
factors in the form shown below.

witth) w® 4 a(xn(yn —o(w®Tx,)) — %w(t)T)

With this final algorithm, we first fit a logistic regression model on the training data to find the
weights for each feature that minimizes the classification error, while guarding against overfitting.
We tune the hyperparameter C' (C' = 1/)), using SciKitLearn’s GridSearch CV which cross-validates
on the training set to find an optimal C. We then apply these weights to the testing set, to output our
predictions for the testing set. Despite having the ability to choose and tune C, overfitting is still a
concern in logistic regression as C is tuned manually which may result in some overfitting.

There are also some key assumptions that logistic regression relies on that must be taken into ac-
count. It assumes that each data point is independent of the others which may not be the case -
for example, if one person writes a series of reviews on the same product and they became more
dissatisfied over time. Additionally, it works best only if all the relevant independent variables are in
the model. In the case of reviews, feature reduction may take away some key independent variables
and some features like punctuation may not even be taken into account as relevant variables.

4 Results

Table 1 shows some key words in reviews and their associated metrics that will be discussed in the
next section. Table 2 shows the accuracy and F1-Score of the classifiers on both the unigrams and
bigrams. Figure 2 displays the ROC curves for the classifiers with no feature reduction.

Classification with no Feature Reduction

1.01

"good place"

0.8 1 Key Word(s) "worst" | "not good" | ... "garbage"
g Prediction | Unigram | Accurate | Not Accurate | Not Accurate
2 06 Accuracy | Bigram | Accurate Accurate | Not Accurate
E LR Unigram -2.01 1.447 0.783
7
kd Weight | Bigram -1.24 -0.792 0.892
v 044
E LDA | Upigram | -025 0.28 0.68

Feature
021 Value Bigram -1.86 -1.8 0.26

Table 1: Analysis of LR weights and LDA fea-
tures with specific keywords in reviews

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 2: ROC Curve with no feature reduction

Unigrams Bigrams
LR SVM NB RF LR SVM NB RF
No Feature 0.7033 0.71 0.6966 | 0.6583 | 0.8433 | 0.8417 | 0.8267 | 0.7783
Reduction 0.775 0.7658 | 0.7675 | 0.7192 | 0.8092 | 0.8129 | 0.8188 | 0.7617
0.7 0.7 0.69 0.62 0.84 0.84 0.83 0.76
0.695 | 0.6833 - 0.6317 | 0.7983 | 0.8033 - 0.6967
PCA 0.767 | 0.7633 - 0.6542 | 0.7783 | 0.7654 - 0.6821
0.69 0.67 - 0.62 0.8 0.8 - 0.7
PCA then 0.6833 | 0.685 - 0.6867 | 0.8167 | 0.815 - 0.8217
LDA 0.8412 | 0.8383 - 0.8379 | 0.9417 | 0.9429 - 0.9404
0.68 0.67 - 0.68 0.82 0.81 - 0.82
Chi-Square 0.7845 0.77 0.786 | 0.7083 | 0.7983 | 0.7967 | 0.795 | 0.7567
Test 0.8 0.76 0.79 0.7 0.8 0.7838 0.8 0.76
0.784 | 0.7363 | 0.7945 | 0.685 0.8 0.8 0.8075 | 0.7197
Accuracy Score Cross-Validated Average Accuracy Score F1 Score
O O O

Table 2: Classification Results

S Discussion and Conclusion

The results show that bigrams perform consistently better than the unigrams at the classification
tasks, based on the accuracy (13.5% higher), F1-Score and the area under the ROC curve (AUC).
This is evident from the ROC Curves in Figure 2 where there is a clear separation between bigrams
and unigrams. This enhanced performance is due to a number of factors including:

1. Some sentiments are better represented with bigrams than unigrams as shown in Figure
1. The logistic regression weight corresponding to “not good” (Table 1) drives home this
point. For unigrams, the average weight of “not and ”good” is 1.447. Since ”"good” has
a higher weight than “not”, this leads to misclassification. However, the bigram weight is
adjusted to be ”-0.792” which correctly predicts the negative sentiment.

2. The bigrams representation encodes the dependence between separate unigrams. This is
especially useful to the Naive Bayes classifier, since the classifier assumes independence
between features.

However, it is important to note that there are cases where both models predict incorrectly, as shown
in Table 1. The word “garbage” does not appear in the training set and so the prediction for neither
method is accurate. Additionally, the better performance of the bigrams could be because it has
8 times more features (4387 bigrams) than the unigrams model (541 unigrams). We can imagine
a situation where this increased model complexity may not be worth the additional performance.
Therefore, to compare the representations more robustly we compare their performance after feature
selection.

5.1 Classification after PCA

This method linearly combines features to form new ones based on their dependency, making it
difficult to interpret their meaning. Since PCA is class independent, it does not suffer from over-
fitting, as evidenced by the cross-validated scores being close to the accuracy scores. Additionally,
applying PCA to both models to reduce the number of features to around 300 produced better re-
sults for bigrams, indicating that the bigrams model can be reduced in complexity while maintaining
performance.

5.2 Classification after PCA and LDA

With this feature reduction, each review is represented as one number based its projection on the
line that best separates the classes, which is plotted in Figure 3 for the bigrams. From the separa-
tion in classes shown in the figure as well as the higher cross-validated accuracy score, we see that
LDA suffers from overfitting. Marron, Todd and Ahn, in their paper Distance Weighted Discrimina-
tion, describe “data piling,” a phenomenon where multiple points are projected onto identical values
which is observed in our case. However, despite this overfitting and “data-piling” it is remark-
able that the drastic feature reduction to one feature only lowers the accuracy by ~2% for NB and
SVM and even increases it with RF. Additionally, with this simplified model complexity the bigrams
model performs much better than the unigrams one, which makes a case for bigram representation.

5.3 Classification after Chi-Square Test

Figure 4 below highlights the 25 Bigrams with the highest p-values after the Chi-Square Test which
tests dependency between feature and class. While most of the words on the list are unigrams that
convey strong sentiment, such as ”great” and “bad,” we also have bigrams like "work great” and “’the
worst.” Nevertheless, the high density of unigrams in top 25 bigrams explains why, after selecting
the top 200 unigrams and bigrams, the classifiers for each representation performed with near-equal
accuracy (Table 1).

Bigrams Training data fit and transformed using LDA

0.008
0.006
0.004
0.002

1.0

Chi-Squared Test: Top 25 Bigrams

0.000 111N ——
-0.002 08 excel o
-0.004 —

—0.006
~0.008 0.6
-4 -2 0 2 a4

Bigrams Testing data transformed using LDA model

0.008
0.006
0.004
0.002 0.2

0.000{ W 1w ¥ E————

-0.002
-0.004 0.0

20 0 60 80 100 120 140
~0.006 X

-0.008

Figure 4: Chi-Square Test showing the top 25 Bi-
grams [3]

-4 -2 0 2 4 6

Figure 3: Feature Reduction Using Linear Dis-
criminant Analysis [6]

54 Concluding Remarks

We have shown that across classifiers, the bigrams representation performs better than the unigrams
representation. This increased performance is maintained, despite feature (model complexity) re-
duction, especially through LDA which reduces each data point to just one feature. However, there
are still concerns about overfitting, data-piling and reviews where both representations classify in-
correctly. In the future, this approach could be applied to larger data sets, features like emojis and
punctuation could be included and unsupervised learning techniques could be explored.

Acknowledgments

Professor Barbara Engelhardt

Jonathan Lu

Diana Cai

The SciKit Learn library which was used for all the code for this assignment

References

[1] Adams, Ryan. ”COS 324: Week 5: Logistic Regression.” Computer Science 324, 9th October
2018, Princeton University.

[2] Buitinck et. al., ”API design for machine learning software: experiences from the scikit-learn
project.” ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 2013

[3] Kim, Ricky. Another Twitter Sentiment Analysis with Python—Part 8 (Dimensionality Reduc-
tion: Chi2, PCA). Towards Data Science, 25 Jan. 2018, towardsdatascience.com/another-
twitter-sentiment-analysis-with-python-part-8-dimensionality-reduction-chi2-pca-
¢6d06fb3fcf3.

[4] Marron, J. S., et al. Distance-Weighted Discrimination. Journal of the American Statistical As-
sociation, vol. 102, no. 480, 2007, pp. 12671271. JSTOR, www.jstor.org/stable/27639976.

[5] Pedregosa et. al., ”Scikit-learn: Machine Learning in Python” Journal of Machine Learning
Research, 2011

[6] Stack Overflow, Binary Classification Using radial basis kernel SVM with a single fea-
ture, https://stats.stackexchange.com/questions/86458/binary-classification-using-radial-basis-
kernel-svm-with-a-single-feature

[7]1 Wang, Sida and Manning, Christopher D. Baselines and bigrams: Simple, good sentiment and
topic classification. In Proceedings of the 50th Annual Meeting of the Association for Computa-
tional Linguistics: Short Papers-Volume 2, pp. 9094. Association for Computational Linguistics,
2012.

	Introduction
	Related Work
	Methods
	Initial Data Exploration
	Data processing: Cleaning the raw data to extract feature set
	Feature Selection: Reducing the dimension of the feature set for model simplification
	Classification Methods
	One Method in Detail: Logistic Regression adams

	Results
	Discussion and Conclusion
	Classification after PCA
	Classification after PCA and LDA
	Classification after Chi-Square Test
	Concluding Remarks

